第2種不完全ガンマ関数とガンマ関数の比の極限
第2種不完全ガンマ関数とガンマ関数の比の極限
(1)
\[ \lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x} \](2)
\[ \lim_{k\rightarrow\infty}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=1 \]-
\(\Gamma\left(x\right)\)はガンマ関数、\(\Gamma\left(k,x\right)\)は第2種不完全ガンマ関数、\(\delta_{ij}\)はクロネッカーのデルタ(1)
\begin{align*} \lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)} & =\lim_{k\rightarrow0}\frac{k\Gamma\left(k,x\right)}{k\Gamma\left(k\right)}\\ & =\lim_{k\rightarrow0}\frac{k\Gamma\left(k,x\right)}{\Gamma\left(k+1\right)}\\ & =\lim_{k\rightarrow0}\frac{\Gamma\left(k+1,x\right)-x^{k}e^{-x}}{\Gamma\left(k+1\right)}\\ & =\lim_{k\rightarrow0}\frac{\Gamma\left(1,x\right)-x^{k}e^{-x}}{\Gamma\left(1\right)}\\ & =e^{-x}-\left(1-\delta_{0x}\right)e^{-x}\\ & =\delta_{0x}e^{-x}\\ & =\delta_{0x} \end{align*}(2)
\begin{align*} \lim_{k\rightarrow\infty}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)} & =\lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}+\sum_{k=+0}^{\infty}\left(\frac{\Gamma\left(k+1,x\right)}{\Gamma\left(k+1\right)}-\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}\right)\\ & =\delta_{0x}+\sum_{k=+0}^{\infty}\left(\frac{\Gamma\left(k+1,x\right)}{\Gamma\left(k+1\right)}-\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}\right)\\ & =\delta_{0x}+e^{-x}\sum_{k=+0}^{\infty}\frac{x^{k}}{k!}\\ & =\delta_{0x}+e^{-x}\left(e^{x}-\delta_{0x}\right)\\ & =\delta_{0x}\left(1-e^{-x}\right)+1\\ & =1 \end{align*}ページ情報
タイトル | 第2種不完全ガンマ関数とガンマ関数の比の極限 |
URL | https://www.nomuramath.com/ysmvct5b/ |
SNSボタン |
階乗と階乗の逆数の母関数
\[
\frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right)
\]
ガンマ関数の1/2値
\[
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\]
第1種・第2種不完全ガンマ関数の基本性質
\[
\Gamma\left(1,x\right)=e^{-x}
\]
1次式の総乗と階乗
\[
\prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)}
\]