ウォリス積分の定義
\(n\in\mathbb{N}_{0}\)とする。
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
以下の積分をウォリス積分という。
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta \]
ページ情報
タイトル | ウォリス積分の定義 |
URL | https://www.nomuramath.com/pf2syylr/ |
SNSボタン |
数列・関数の和・積・商・スカラー倍の極限
\[
\lim_{n\rightarrow\infty}a_{n}b_{n}=ab
\]
対数の指数
\[
a^{\log_{b}c}=c^{\log_{b}a}
\]
ラクランジュの未定乗数法
\[
F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right)
\]
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]