対数と偏角の基本
対数と偏角の基本
(1)定義
\[ \arg z=\Arg z+\arg1 \]
(2)定義
\[ \log z=\exp^{\bullet}z \]
(3)
\[ \log z=\ln\left|z\right|+i\arg z \]
(4)定義
\[ \Log z=\ln\left|z\right|+i\Arg z \]
(5)
\[ \log1=i\arg1 \]
(6)
\[ \log z=\Log z+\log1 \]
(3)
\(w=e^{z}\)は
\begin{align*} \left|w\right|e^{i\arg w} & =e^{\Re(z)}e^{i\Im(z)} \end{align*}
これより、絶対値と偏角を比べると、
\[ \begin{cases} \Re(z)=\ln\left|w\right|\\ \Im(z)=\arg w \end{cases} \]
となるので、
\begin{align*} \log w & =\exp^{\bullet}(w)\\ & =z\\ & =\Re(z)+i\Im(z)\\ & =\ln\left|w\right|+i\arg w \end{align*}
これより、
\begin{align*} \log z & =\ln\left|z\right|+i\arg z \end{align*}
(5)
\begin{align*} \log1 & =\left\{ 2\pi ni;n\in\mathbb{Z}\right\} \\ & =i\left\{ 2\pi n;n\in\mathbb{Z}\right\} \\ & =i\arg1 \end{align*}
(6)
\begin{align*} \log z & =\ln\left|z\right|+i\arg z\\ & =\ln\left|z\right|+i\left(\Arg z+\arg1\right)\\ & =\ln\left|z\right|+i\Arg z+i\arg1\\ & =\Log z+\log1 \end{align*}
ページ情報
タイトル | 対数と偏角の基本 |
URL | https://www.nomuramath.com/ohdtuyfx/ |
SNSボタン |