符号関数の偏角・対数
符号関数の偏角・対数
\(\alpha\ne0\)とする。
\(\alpha\ne0\)とする。
(1)
\[ \Arg\sgn\alpha=\Arg\alpha \](2)
\[ \Log\sgn\alpha=i\Arg\alpha \](1)
\begin{align*} \Arg\sgn\alpha & =-i\Log\sgn\sgn\alpha\\ & =-i\Log\sgn\alpha\\ & =\Arg\alpha \end{align*}(1)-2
\begin{align*} \Arg\sgn\alpha & =\Arg\frac{\alpha}{\left|\alpha\right|}\\ & =\Arg\alpha \end{align*}(2)
\begin{align*} \Log\sgn\alpha & =\ln\left|\sgn\alpha\right|+i\Arg\sgn\alpha\\ & =i\Arg\alpha \end{align*}(2)-2
\begin{align*} \Log\sgn\alpha & =\Log\frac{\alpha}{\left|\alpha\right|}\\ & =\Log\alpha-\ln\left|\alpha\right|\\ & =i\Arg\alpha \end{align*}ページ情報
タイトル | 符号関数の偏角・対数 |
URL | https://www.nomuramath.com/pjik7qf0/ |
SNSボタン |
複素共役の偏角と対数
\[
\Arg\overline{z}=-\Arg z+2\pi\delta_{\pi,\Arg z}
\]
2乗のルート
\[
\sqrt{\alpha^{2}}=\left|\alpha\right|\sqrt{\sgn^{2}\left(\alpha\right)}
\]
eの冪乗の基本
\[
e^{\alpha+\beta}=e^{\alpha}e^{\beta}
\]
偏角・対数と絶対値
\[
\Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta
\]