整列集合の基本的な性質

整列集合の基本的な性質
整列集合\(\left(X,\preceq\right)\)とその部分集合\(A\subseteq X\)について以下が成り立つ。

(1)

\[ X\left\langle \min X\right\rangle =\emptyset \]

(2)

\[ \forall a,b\in X,b\prec a\rightarrow X\left\langle a\right\rangle \left\langle b\right\rangle =X\left\langle b\right\rangle \]

(1)

\(X\left\langle \min X\right\rangle =\left\{ x\in X;x\prec\min X\right\} \)となるが\(x\prec\min X\)を満たす\(x\)は存在しないので与式は成り立つ。

(2)

\(b\prec a\)のとき\(X\left\langle a\right\rangle \left\langle b\right\rangle =\left\{ x\in X;x\prec a\right\} \left\langle b\right\rangle =\left\{ x\in X;x\prec a\land x\prec b\right\} =\left\{ x\in X;x\prec b\right\} =X\left\langle b\right\rangle \)なので与式は成り立つ

ページ情報
タイトル
整列集合の基本的な性質
URL
https://www.nomuramath.com/ngollmaz/
SNSボタン