整列集合の定義

整列集合の定義
全順序集合\(\left(X,\preceq\right)\)の任意の空でない部分集合が最小元を持つとき\(\left(X,\preceq\right)\)を整列集合という。

-

全順序集合で最小元を持っても整列集合とは限らない。
例えば\(X=\left[0,1\right]\)として通常の大小関係をとると、全順序集合となり、全体集合\(X\)では最小元は\(0\)であるが、部分集合\(\left(0,1\right)\subseteq X\)の最小元は存在しないので整列集合とはならない。

-

整列集合の定義の全順序集合を半順序集合にしてもいい。
何故なら、任意の元\(a,b\in X\)をとると整列集合なので\(\left\{ a,b\right\} \)は最小元をもつ。
従って\(a\preceq b\lor b\preceq a\)が成り立つので全順序集合となるからである。
順序を通常の大小関係とすると、自然数全体の集合\(\mathbb{N}\)は整列集合であるが、整数全体の集合\(\mathbb{Z}\)や有理数全体の集合\(\mathbb{Q}\)や実数全体の集合\(\mathbb{R}\)は整列集合でない。

ページ情報
タイトル
整列集合の定義
URL
https://www.nomuramath.com/vh6cs0vl/
SNSボタン