切片の定義
切片の定義
整列集合\(\left(X,\preceq\right)\)が与えられたとき、元\(a\in X\)に対し集合\(X\left\langle a\right\rangle =\left\{ x\in X;x\prec a\right\} \)を\(X\)の\(a\)による切片という。
整列集合\(\left(X,\preceq\right)\)が与えられたとき、元\(a\in X\)に対し集合\(X\left\langle a\right\rangle =\left\{ x\in X;x\prec a\right\} \)を\(X\)の\(a\)による切片という。
自然数全体の集合\(\mathbb{N}\)に通常の大小関係\(\leq\)を入れた整列集合\(\left(\mathbb{N},\leq\right)\)を考えると、\(\mathbb{N}\left\langle 3\right\rangle =\left\{ 1,2\right\} \)となる。
ページ情報
タイトル | 切片の定義 |
URL | https://www.nomuramath.com/xa7br67j/ |
SNSボタン |
半順序集合・狭義半順序集合の辞書式順序
\[
\left(x_{1},y_{1}\right)\preceq\left(x_{2},y_{2}\right)\Leftrightarrow x_{1}\prec_{X}x_{2}\lor\left(x_{1}=x_{2}\land y_{1}\preceq_{Y}y_{2}\right)
\]
順序写像・単調写像・順序反映・順序埋め込み・順序同型写像の定義
\[
a\preceq_{X}b\Rightarrow f\left(a\right)\preceq_{Y}f\left(b\right)
\]
有向集合と有向点列の定義
\[
\forall a,b\in\Lambda,\exists c\in\Lambda,a\preceq c\land b\preceq c
\]
順序写像かつ順序単射であることと順序埋め込み写像は同値