2項係数の半分までの総和
2項係数の半分までの総和
(1)偶数の場合で半分以下
\[ \sum_{k=0}^{n-1}C\left(2n,k\right)=2^{2n-1}-\frac{1}{2}C\left(2n,n\right) \](2)偶数の場合で半分以上
\[ \sum_{k=0}^{n}C\left(2n,k\right)=2^{2n-1}+C\left(2n,n\right) \](3)奇数の場合で丁度半分
\[ \sum_{k=0}^{n-1}C\left(2n-1,k\right)=2^{2n-2} \](1)
\begin{align*} \sum_{k=0}^{n-1}C\left(2n,k\right) & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n,k\right)+\sum_{k=0}^{n-1}C\left(2n,2n-k\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n,k\right)+\sum_{k=0}^{n-1}C\left(2n,2n-\left(n-1-k\right)\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n,k\right)+\sum_{k=0}^{n-1}C\left(2n,n+1+k\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n,k\right)+\sum_{k=n+1}^{2n}C\left(2n,k\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{2n}C\left(2n,k\right)-C\left(2n,n\right)\right)\\ & =2^{2n-1}-\frac{1}{2}C\left(2n,n\right) \end{align*}(2)
\begin{align*} \sum_{k=0}^{n}C\left(2n,k\right) & =\sum_{k=0}^{n-1}C\left(2n,k\right)+C\left(2n,n\right)\\ & =2^{2n-1}-\frac{1}{2}C\left(2n,n\right)+C\left(2n,n\right)\\ & =2^{2n-1}+C\left(2n,n\right) \end{align*}(3)
\begin{align*} \sum_{k=0}^{n-1}C\left(2n-1,k\right) & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n-1,k\right)+\sum_{k=0}^{n-1}C\left(2n-1,2n-1-k\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n-1,k\right)+\sum_{k=0}^{n-1}C\left(2n-1,2n-1-\left(n-1-k\right)\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n-1,k\right)+\sum_{k=0}^{n-1}C\left(2n-1,n+k\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{n-1}C\left(2n-1,k\right)+\sum_{k=n}^{2n-1}C\left(2n-1,k\right)\right)\\ & =\frac{1}{2}\left(\sum_{k=0}^{2n-1}C\left(2n-1,k\right)\right)\\ & =2^{2n-2} \end{align*}ページ情報
| タイトル | 2項係数の半分までの総和 |
| URL | https://www.nomuramath.com/k1y1011c/ |
| SNSボタン |
パスカルの法則の応用
\[
C\left(x+n,y+n\right)=C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right)
\]
2項係数の総和その他
\[
\sum_{k=1}^{n-1}\frac{C\left(k-n,k\right)}{k}=-H_{n-1}
\]
パスカルの法則
\[
C(x+1,y+1)=C(x,y+1)+C(x,y)
\]
2項変換と交代2項変換の逆変換
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}C(n,k)b_{k}
\]

