集合の分割の定義
集合の分割の定義
集合\(A\)と\(A\)の空でない部分集合族\(\mathcal{P}=\left\{ P_{\lambda}\right\} _{\lambda\in\Lambda}\)があり、任意の\(x\in A\)に対し\(x\in A\in\mathcal{P}\)を満たす\(A\)がただ1つのみ存在するとき、\(\mathcal{P}\)は\(A\)の分割であるという。
これは以下が全て成り立つことと同値である。
集合\(A\)と\(A\)の空でない部分集合族\(\mathcal{P}=\left\{ P_{\lambda}\right\} _{\lambda\in\Lambda}\)があり、任意の\(x\in A\)に対し\(x\in A\in\mathcal{P}\)を満たす\(A\)がただ1つのみ存在するとき、\(\mathcal{P}\)は\(A\)の分割であるという。
これは以下が全て成り立つことと同値である。
(a)空集合
\[ \emptyset\notin\mathcal{P} \](b)和集合
\[ \bigcup\mathcal{P}=A \](c)積集合
\[ \forall P_{1}\in\mathcal{P},\forall P_{2}\in\mathcal{P},P_{1}\ne P_{2}\Rightarrow P_{1}\cap P_{2}=\emptyset \]-
有限集合の場合は、元の個数を\(n\)とすると分割の仕方は\(B_{n}\)通りある。ここで\(B_{n}\)はベル数である。
\(n=1\)のとき1通り、\(n=2\)のとき2通り、\(n=3\)のとき5通り、\(n=4\)のとき15通り、\(n=5\)のとき52通り、\(n=6\)のとき203通り、\(n=7\)のとき877通りとなる。
-
集合\(\left\{ a\right\} \)の分割は\(\left\{ \left\{ a\right\} \right\} \)の1つしかない。任意の空でない集合\(A\)に対し\(\left\{ A\right\} \)は分割の1つである。
任意の集合\(A\)に対し、空でない真部分集合\(P\)と\(A\setminus P\)は分割の1つである。
ページ情報
タイトル | 集合の分割の定義 |
URL | https://www.nomuramath.com/iuykatqo/ |
SNSボタン |
有界閉区間上の連続関数はリーマン可積分
有界閉区間上の連続関数はリーマン可積分である。
階乗冪(下降階乗・上昇階乗)の微分
\[
\frac{d}{dx}P(x,y) =P(x,y)\left\{ \psi(1+x)-\psi(1+x-y)\right\}
\]
2項係数の総和
\[
\sum_{k=0}^{n}P(k,m)C(n,k)=P(n,m)2^{n-m}
\]
mzp関数の定義と負数の関係
\[
\mzp_{a,b}\left(x_{1},x_{2};-x\right)=-\mzp_{-b,-a}\left(-x_{2},-x_{1};x\right)
\]