ウォリス積分を含む極限

ウォリス積分を含む極限値

(1)

\[ \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}} \]

(2)

\[ \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta=\sqrt{\frac{\pi}{2}} \]

(1)

\begin{align*} \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\frac{1}{2}\lim_{n\rightarrow\infty}\sqrt{n}B\left(\frac{n+1}{2},\frac{1}{2}\right)\\ & =\frac{1}{2}\lim_{n\rightarrow\infty}\sqrt{n}\frac{\Gamma\left(\frac{n+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}\\ & =\frac{\sqrt{\pi}}{2}\lim_{n\rightarrow\infty}\sqrt{\sqrt{n}\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}\sqrt{n+1}\frac{\Gamma\left(\frac{n+2}{2}\right)}{\Gamma\left(\frac{n+3}{2}\right)}}\\ & =\frac{\sqrt{\pi}}{2}\lim_{n\rightarrow\infty}\sqrt{\sqrt{n}\sqrt{n+1}\frac{2}{n+1}}\\ & =\sqrt{\frac{\pi}{2}}\lim_{n\rightarrow\infty}\sqrt{\frac{1}{\sqrt{1+\frac{1}{n}}}}\\ & =\sqrt{\frac{\pi}{2}} \end{align*}

(2)

\begin{align*} \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta & =\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\left(\frac{\pi}{2}-\theta\right)d\theta\\ & =\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}\\ & =\sqrt{\frac{\pi}{2}} \end{align*}

ページ情報

タイトル

ウォリス積分を含む極限

URL

https://www.nomuramath.com/zotvfo8k/

SNSボタン