偶数ゼータの通常型母関数
偶数ゼータの通常型母関数
\[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]
\[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]
\begin{align*}
\sum_{k=1}^{\infty}\zeta(2k)x^{2k} & =\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}\frac{1}{j^{2k}}x^{2k}\\
& =\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\left(\frac{x}{j}\right)^{2k}\\
& =\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}\left(\frac{x}{j}\right)^{2k}\\
& =\sum_{j=1}^{\infty}\left(\frac{x}{j}\right)^{2}\frac{1}{1-\left(\frac{x}{j}\right)^{2}}\\
& =x\sum_{j=1}^{\infty}\frac{x}{j^{2}-x^{2}}\\
& =-\frac{x}{2}\frac{d}{dx}\sum_{j=1}^{\infty}\log\left(j^{2}-x^{2}\right)\\
& =-\frac{x}{2}\frac{d}{dx}\log\left(\prod_{j=1}^{\infty}\left(j^{2}-x^{2}\right)\right)\\
& =-\frac{x}{2}\frac{d}{dx}\log\left(\frac{1}{\pi x}\left(\prod_{m=1}^{\infty}m^{2}\right)\pi x\left(\prod_{j=1}^{\infty}\frac{j^{2}-x^{2}}{j^{2}}\right)\right)\\
& =-\frac{x}{2}\frac{d}{dx}\log\left(\frac{1}{\pi x}\left(\prod_{m=1}^{\infty}m^{2}\right)\sin\left(\pi x\right)\right)\\
& =-\frac{x}{2}\frac{d}{dx}\left(\log\sin\left(\pi x\right)-\log x+\log\left(\frac{1}{\pi}\left(\prod_{m=1}^{\infty}m^{2}\right)\right)\right)\\
& =-\frac{x}{2}\left(\pi\tan^{-1}\left(\pi x\right)-\frac{1}{x}\right)\\
& =\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)
\end{align*}
ページ情報
タイトル | 偶数ゼータの通常型母関数 |
URL | https://www.nomuramath.com/ih5f369k/ |
SNSボタン |
フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
\[
\frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right)
\]
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]