フルヴィッツのゼータ関数の定義
フルヴィッツのゼータ関数の定義
\(1<\Re\left(s\right)\;\land\;a\notin\mathbb{Z}_{\;0}^{-}\)とする。
\[ \zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}} \]
\(1<\Re\left(s\right)\;\land\;a\notin\mathbb{Z}_{\;0}^{-}\)とする。
\[ \zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}} \]
ページ情報
タイトル | フルヴィッツのゼータ関数の定義 |
URL | https://www.nomuramath.com/xqwiq65z/ |
SNSボタン |
ゼータ関数とイータ関数の関係
\[
\eta(s)=(1-2^{1-s})\zeta(s)
\]
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
リーマン・ゼータ関数の微分の極限
\[
\lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right)=\pm\left(-1\right)^{n}n!
\]
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]