ヘヴィサイドの階段関数の2定義値と関数
ヘヴィサイドの階段関数の2定義値と関数
(1)
\[ f\left(x\right)H\left(\pm1\right)=f\left(\pm x\right)H\left(\pm1\right) \](2)
\[ H\left(\pm1\right)=\pm H\left(\pm1\right) \](3)
\[ f\left(\pm_{1}H\left(\pm_{2}1\right)\right)=f\left(0\right)H\left(\mp_{2}1\right)+f\left(\pm_{1}1\right)H\left(\pm_{2}1\right) \]-
\(H\left(x\right)\)はヘヴィサイドの階段関数(1)
\begin{align*} f\left(x\right)H\left(\pm1\right) & =\begin{cases} f\left(x\right) & \pm1\rightarrow+1\\ 0 & \pm1\rightarrow-1 \end{cases}\\ & =\begin{cases} f\left(\pm x\right) & \pm1\rightarrow+1\\ 0 & \pm1\rightarrow-1 \end{cases}\\ & =f\left(\pm x\right)H\left(\pm1\right) \end{align*}(2)
\begin{align*} H\left(\pm1\right) & =\left[f\left(x\right)H\left(\pm1\right)\right]_{f\left(x\right)=x\;,\;x=1}\\ & =\left[f\left(\pm x\right)H\left(\pm1\right)\right]_{f\left(x\right)=x\;,\;x=1}\\ & =\pm H\left(\pm1\right) \end{align*}(2)-2
\begin{align*} H\left(\pm1\right) & =\frac{1\pm1}{2}\\ & =\pm\left(\frac{1\pm1}{2}\right)\\ & =\pm H\left(\pm1\right) \end{align*}(3)
\begin{align*} f\left(\pm_{1}H\left(\pm_{2}1\right)\right) & =\begin{cases} f\left(\pm_{1}1\right) & \pm_{2}1\rightarrow+1\\ f\left(0\right) & \pm_{2}1\rightarrow-1 \end{cases}\\ & =f\left(0\right)H\left(\mp_{2}1\right)+f\left(\pm_{1}1\right)H\left(\pm_{2}1\right) \end{align*}ページ情報
タイトル | ヘヴィサイドの階段関数の2定義値と関数 |
URL | https://www.nomuramath.com/h01ij6zb/ |
SNSボタン |
ヘヴィサイドの階段関数の2定義値と複号
\[
H\left(\pm1\right)=\frac{1\pm1}{2}
\]
mzp関数の定義と負数の関係
\[
\mzp_{a,b}\left(x_{1},x_{2};-x\right)=-\mzp_{-b,-a}\left(-x_{2},-x_{1};x\right)
\]
ヘヴィサイドの階段関数と符号関数・絶対値
\[
H_{\frac{1}{2}}\left(\pm x\right)=\frac{1\pm\sgn x}{2}
\]
ヘヴィサイドの階段関数とクロネッカーのデルタの関係
\[
H_{a}\left(n\right)-H_{b}\left(n-1\right)=a\delta_{0,n}+\left(1-b\right)\delta_{1,n}
\]