パスカルの法則の一般形
パスカルの法則の一般形
\(n\in\mathbb{N}_{0}\)とする。
\[ C\left(x+n,y+n\right)=\sum_{k=0}^{n}C\left(n,k\right)C\left(x,y+k\right) \]
(0)
ファンデルモンドの畳み込み定理より、
\begin{align*} \sum_{k=0}^{n}C\left(n,k\right)C\left(x,y+k\right) & =\sum_{k=0}^{n}C\left(n,n-k\right)C\left(x,y+n-k\right)\\ & =\sum_{k=0}^{n}C\left(n,k\right)C\left(x,y+n-k\right)\\ & =C\left(x+n,y+n\right) \end{align*}
となるので与式は成り立つ。
(0)-2
\(n=0\)のとき明らかに成り立つ。
\(n=j\)のとき成り立つと仮定すると、\(n=j+1\)のときは、
\begin{align*} C\left(x+j+1,y+j+1\right) & =C\left(x+j,y+j\right)+C\left(x+j,y+1+j\right)\\ & =\sum_{k=0}^{j}C\left(j,k\right)C\left(x,y+k\right)+\sum_{k=0}^{j}C\left(j,k\right)C\left(x,y+k+1\right)\\ & =\sum_{k=0}^{j}C\left(j,k\right)C\left(x,y+k\right)+\sum_{k=1}^{j+1}C\left(j,k-1\right)C\left(x,y+k\right)\\ & =\sum_{k=0}^{j+1}\left\{ C\left(j,k\right)+C\left(j,k-1\right)\right\} C\left(x,y+k\right)\\ & =\sum_{k=0}^{j+1}C\left(j+1,k\right)C\left(x,y+k\right) \end{align*}
となるので成り立つ。
故に数学的帰納法より与式は成り立つ。
ページ情報
タイトル | パスカルの法則の一般形 |
URL | https://www.nomuramath.com/gkhugivo/ |
SNSボタン |