位数と原始根の定義
位数
\(p\)を2以上の自然数とし、\(a^{n}\overset{p}{\equiv}1\)となる最小の正整数\(n\)を法\(p\)における\(a\)の位数という。
原始根
素数\(p\)を法としたとき\(a\)の位数が\(p-1\)になるとき\(a\)を\(p\)の原始根という。
\(p\)を2以上の自然数とし、\(a^{n}\overset{p}{\equiv}1\)となる最小の正整数\(n\)を法\(p\)における\(a\)の位数という。
原始根
素数\(p\)を法としたとき\(a\)の位数が\(p-1\)になるとき\(a\)を\(p\)の原始根という。
ページ情報
タイトル | 位数と原始根の定義 |
URL | https://www.nomuramath.com/fs1uv9bw/ |
SNSボタン |
2元1次不定方程式の整数解とユークリッドの互除法
\[
ax+by=c
\]
オイラーのトーシェント関数の定義
\[
\phi\left(n\right)=\left|\left\{ k\in\mathbb{N};1\leq k\leq n,\gcd\left(k,n\right)=1\right\} \right|
\]
完全剰余系の基本定理
\[
1a,2a,3a,\cdots\cdots,na
\]
n番目の素数の式
\[
P\left(n\right)=1+\sum_{k=1}^{2^{n}}\left\lfloor \sqrt[n]{\frac{n}{\sum_{j=1}^{k}\left\lfloor \cos^{2}\left(\frac{\left(j-1\right)!+1}{j}\pi\right)\right\rfloor }}\right\rfloor
\]