(*)原始根定理
原始根定理
\(p\)を素数とするとき、原始根の個数は\(\varphi(p-1)\)である。
\(p\)を素数とするとき、原始根の個数は\(\varphi(p-1)\)である。
略
ページ情報
タイトル | (*)原始根定理 |
URL | https://www.nomuramath.com/uv83705z/ |
SNSボタン |
整数論の基本定理
\[
ax+by=1\text{が整数解を持つ}\Leftrightarrow a\text{と}b\text{は互いに素}
\]
二元不定方程式が整数解を持つ
\[
ax+by=c\text{が整数解を持つ}\Leftrightarrow c\text{は}\gcd(a,b)\text{の倍数}
\]
完全剰余系の基本定理
\[
1a,2a,3a,\cdots\cdots,na
\]
2元1次不定方程式の整数解とユークリッドの互除法
\[
ax+by=c
\]