集合の相等・部分集合・真部分集合の定義
集合の相等・部分集合・真部分集合の定義
すなわち\(A=B\Leftrightarrow\forall x\left(x\in A\leftrightarrow x\in B\right)\)である。
または
\begin{align*} A=B & \Leftrightarrow\forall x\left(x\in A\leftrightarrow x\in B\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\land x\in A\leftarrow x\in B\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in A\leftarrow x\in B\right)\\ & \Leftrightarrow A\subseteq B\land A\supseteq B \end{align*} と表される。
\(A\)と\(B\)が等しくないとき\(A\ne B\)で表す。
すなわち\(A\ne B\Leftrightarrow\exists x\left(x\in A\nleftrightarrow x\in B\right)\)である。
または、
\begin{align*} A\ne B & \Leftrightarrow\lnot\left(A\ne B\right)\\ & \Leftrightarrow\lnot\left(A\subseteq B\land A\supseteq B\right)\\ & \Leftrightarrow A\nsubseteq B\lor A\nsupseteq B \end{align*} と表される。
すなわち、
\[ A\subseteq B\Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right) \] である。
\(A\)は\(B\)の部分集合でないとき\(A\nsubseteq B\)で表す。
すなわち、
\[ A\nsubseteq B\Leftrightarrow\exists x\left(x\in A\nrightarrow x\in B\right) \] または、
\[ A\nsubseteq B\Leftrightarrow\exists x\left(x\in A\land x\notin B\right) \] である。
すなわち、
\[ A\subsetneq B\Leftrightarrow\left(A\subseteq B\land A\ne B\right) \] である。
これは、
\[ A\subsetneq B\Leftrightarrow\forall x\left(x\in A\rightarrow x\notin B\right)\land\exists x\left(x\in B\rightarrow x\notin A\right) \] である。
(1)集合の相等
集合\(A\)の任意の要素が集合\(B\)の要素であり、集合\(B\)の任意の要素が集合\(A\)の要素であるとき、\(A\)と\(B\)は等しいといい、\(A=B\)で表す。すなわち\(A=B\Leftrightarrow\forall x\left(x\in A\leftrightarrow x\in B\right)\)である。
または
\begin{align*} A=B & \Leftrightarrow\forall x\left(x\in A\leftrightarrow x\in B\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\land x\in A\leftarrow x\in B\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in A\leftarrow x\in B\right)\\ & \Leftrightarrow A\subseteq B\land A\supseteq B \end{align*} と表される。
\(A\)と\(B\)が等しくないとき\(A\ne B\)で表す。
すなわち\(A\ne B\Leftrightarrow\exists x\left(x\in A\nleftrightarrow x\in B\right)\)である。
または、
\begin{align*} A\ne B & \Leftrightarrow\lnot\left(A\ne B\right)\\ & \Leftrightarrow\lnot\left(A\subseteq B\land A\supseteq B\right)\\ & \Leftrightarrow A\nsubseteq B\lor A\nsupseteq B \end{align*} と表される。
(2)部分集合
集合\(A\)の任意の要素が集合\(B\)の要素であるとき、\(A\)は\(B\)の部分集合であるといい、\(A\subseteq B\)または\(B\supseteq A\)で表す。すなわち、
\[ A\subseteq B\Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right) \] である。
\(A\)は\(B\)の部分集合でないとき\(A\nsubseteq B\)で表す。
すなわち、
\[ A\nsubseteq B\Leftrightarrow\exists x\left(x\in A\nrightarrow x\in B\right) \] または、
\[ A\nsubseteq B\Leftrightarrow\exists x\left(x\in A\land x\notin B\right) \] である。
(3)真部分集合
\(A\)は\(B\)の部分集合であるが、\(A\)と\(B\)は異なる集合であるとき、\(A\subsetneq B\)または\(B\supsetneq A\)で表す。すなわち、
\[ A\subsetneq B\Leftrightarrow\left(A\subseteq B\land A\ne B\right) \] である。
これは、
\[ A\subsetneq B\Leftrightarrow\forall x\left(x\in A\rightarrow x\notin B\right)\land\exists x\left(x\in B\rightarrow x\notin A\right) \] である。
-
\(A\)は\(B\)の部分集合でないときは以下のようになる。\begin{align*} A\nsubseteq B & \Leftrightarrow\lnot\left(A\subseteq B\right)\\ & \Leftrightarrow\lnot\left(\forall x\left(x\in A\rightarrow x\in B\right)\right)\\ & \Leftrightarrow\exists x\left(x\in A\nrightarrow x\in B\right)\\ & \Leftrightarrow\exists x\lnot\left(\lnot\left(x\in A\right)\lor x\in B\right)\\ & \Leftrightarrow\exists x\left(x\in A\land x\notin B\right) \end{align*} 集合\(A\)の要素であって集合\(B\)の要素でなければいいと、
\[ \forall x\left(x\in A\rightarrow x\notin B\right)\Leftrightarrow A\nsubseteq B \] とすると間違いなので注意。
何故なら\(A\)に属さない要素を\(x\)として適当に取れば\(x\in A\)が偽になり左辺は常に成り立つからである。
\[ \left(\forall x\in A,x\in B\right)\Leftrightarrow A\subseteq B \] とすれば、
\[ \left(\exists x\in A,x\notin B\right)\Leftrightarrow A\nsubseteq B \] となる。
-
真部分集合は\begin{align*} A\subsetneq B & \Leftrightarrow A\subseteq B\land A\ne B\\ & \Leftrightarrow A\subseteq B\land\lnot\left(A\subseteq B\land A\supseteq B\right)\\ & \Leftrightarrow A\subseteq B\land\left(A\nsubseteq B\lor A\nsupseteq B\right)\\ & \Leftrightarrow A\subseteq B\land A\nsupseteq B\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\notin B\right)\land\exists x\left(x\in B\rightarrow x\notin A\right) \end{align*} となる。
ページ情報
| タイトル | 集合の相等・部分集合・真部分集合の定義 |
| URL | https://www.nomuramath.com/zfzujpke/ |
| SNSボタン |
(*)分離公理(距離・正規・正則・T2・T1・T0・その他)同士の関係
\[
\text{距離空間}\Rightarrow\text{正規空間}\Rightarrow\text{正則空間}\Rightarrow T_{2}\text{空間}\Rightarrow T_{1}\text{空間}\Rightarrow T_{0}\text{空間}
\]
xDの冪乗の性質
\[
\left(x\frac{d}{dx}\right)^{n}e^{x}=e^{x}\sum_{k=0}^{\infty}S_{2}\left(n,k\right)x^{k}
\]
対数を含む積分
\[
\int\log\left(x\right)f\left(x\right)dx=\left[\frac{d}{dt}\int x^{t}f\left(x\right)dx\right]_{t=0}
\]
ベーカー・キャンベル・ハウスドルフの公式(BCH公式)
\[
e^{A}e^{B}=\exp\left(A+B+\frac{1}{2}\left[A,B\right]+\frac{1}{12}\left[A-B,\left[A,B\right]\right]+\cdots\right)
\]

