一様連続であれば各点連続
一様連続であれば各点連続
距離空間\(\left(X,d_{X}\right),\left(Y,d_{Y}\right)\)と写像\(f:X\rightarrow Y\)があるとする。
このとき、\(f\)が一様連続であれば各点連続である。
逆は一般的に成り立たない。
距離空間\(\left(X,d_{X}\right),\left(Y,d_{Y}\right)\)と写像\(f:X\rightarrow Y\)があるとする。
このとき、\(f\)が一様連続であれば各点連続である。
逆は一般的に成り立たない。
一様連続の定義は、
\[ \forall\epsilon>0,\exists\delta>0,\forall x_{1},x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] であり、各点連続の定義は、
\[ \forall x_{1}\in X,\forall\epsilon>0,\exists\delta>0,\forall x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] である。
全称記号と存在記号は順番により、
\[ \exists a,\forall b,P\left(a,b\right)\Rightarrow\forall b,\exists a,P\left(a,b\right) \] となるが、逆は一般的に成り立たない。
これより、一様連続であれば各点連続であるが、逆は一般的に成り立たない。
\[ \forall\epsilon>0,\exists\delta>0,\forall x_{1},x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] であり、各点連続の定義は、
\[ \forall x_{1}\in X,\forall\epsilon>0,\exists\delta>0,\forall x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] である。
全称記号と存在記号は順番により、
\[ \exists a,\forall b,P\left(a,b\right)\Rightarrow\forall b,\exists a,P\left(a,b\right) \] となるが、逆は一般的に成り立たない。
これより、一様連続であれば各点連続であるが、逆は一般的に成り立たない。
ページ情報
タイトル | 一様連続であれば各点連続 |
URL | https://www.nomuramath.com/bwn8rqfu/ |
SNSボタン |
全有界ならば有界
全有界ならば有界である。
距離空間でのε-近傍・開集合・閉集合・開集合全体の集合・開集合族の定義
\[
U_{\epsilon}\left(a\right)=\left\{ x\in X;d\left(x,a\right)<\epsilon\right\}
\]
ルベーグの被覆補題
\[
\diam\left(A\right)<\delta\rightarrow A\subseteq U
\]
完備距離空間の部分集合は完備とは限らない
完備距離空間$\left(X,d_{X}\right)$の部分集合$A\subseteq X$は完備とは限らない。