(*)フルヴィッツの公式
フルヴィッツの公式
\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]
\[ \zeta\left(s,a\right)=\frac{2\Gamma\left(1-s\right)}{\left(2\pi\right)^{1-s}}\left\{ \sin\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\cos\left(2\pi ka\right)}{k^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\sin\left(2\pi ka\right)}{k^{1-s}}\right\} \]
\(\Gamma\left(z\right)\)はガンマ関数
\(\Li_{s}\left(z\right)\)は多重対数関数
(1)
\(1<\Re\left(s\right)\;\land\;0<a\leq1\)のとき、\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]
(2)
\(\Re\left(s\right)<0\;\land\;0<a\leq1\)のとき、\[ \zeta\left(s,a\right)=\frac{2\Gamma\left(1-s\right)}{\left(2\pi\right)^{1-s}}\left\{ \sin\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\cos\left(2\pi ka\right)}{k^{1-s}}+\cos\left(\frac{\pi s}{2}\right)\sum_{k=1}^{\infty}\frac{\sin\left(2\pi ka\right)}{k^{1-s}}\right\} \]
-
\(\zeta\left(s,\alpha\right)\)はフルヴィッツ・ゼータ関数\(\Gamma\left(z\right)\)はガンマ関数
\(\Li_{s}\left(z\right)\)は多重対数関数
略
ページ情報
タイトル | (*)フルヴィッツの公式 |
URL | https://www.nomuramath.com/dv9im424/ |
SNSボタン |
偶数ゼータ・奇数ゼータ・ゼータの総和
\[
\sum_{k=2}^{\infty}\left(\zeta\left(k\right)-1\right)=1
\]
ζ(2)の値
\[
\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]
完備リーマンゼータ関数の関数等式
\[
\xi(s)=\xi(1-s)
\]