階乗と冪乗の極限
階乗と冪乗の極限
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\begin{align*}
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!} & =\lim_{n\rightarrow\infty}\prod_{k=1}^{n}\frac{x}{k}\\
& =0
\end{align*}
ページ情報
タイトル | 階乗と冪乗の極限 |
URL | https://www.nomuramath.com/bs5ajhr9/ |
SNSボタン |
数列の極限
ベッセル関数のポアソン積分表示
\[
J_{\nu}(z)=\frac{1}{\sqrt{\pi}\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{z}{2}\right)^{\nu}\int_{-1}^{1}(1-t^{2})^{\nu-\frac{1}{2}}e^{izt}dt
\]
ウォリス積分の同表示
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta
\]
ウォリスの公式
\[
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2}
\]