第3種・第4種チェビシェフ多項式の定義
第3種・第4種チェビシェフ多項式の定義
第3種チェビシェフ多項式
\[ V_{n}(\cos t)=\frac{\cos\left(\left(n+\frac{1}{2}\right)t\right)}{\cos\left(\frac{1}{2}t\right)} \] \[ V_{n}(x)=\frac{\cos\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\cos\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
第4種チェビシェフ多項式
\[ W_{n}(\cos t)=\frac{\sin\left(\left(n+\frac{1}{2}\right)t\right)}{\sin\left(\frac{1}{2}t\right)} \] \[ W_{n}(x)=\frac{\sin\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\sin\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
第3種チェビシェフ多項式
\[ V_{n}(\cos t)=\frac{\cos\left(\left(n+\frac{1}{2}\right)t\right)}{\cos\left(\frac{1}{2}t\right)} \] \[ V_{n}(x)=\frac{\cos\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\cos\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
第4種チェビシェフ多項式
\[ W_{n}(\cos t)=\frac{\sin\left(\left(n+\frac{1}{2}\right)t\right)}{\sin\left(\frac{1}{2}t\right)} \] \[ W_{n}(x)=\frac{\sin\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\sin\left(\frac{1}{2}\cos^{\bullet}x\right)} \]
ページ情報
タイトル | 第3種・第4種チェビシェフ多項式の定義 |
URL | https://www.nomuramath.com/yd2na8ru/ |
SNSボタン |
第1種・第2種と第3種チェビシェフ多項式同士の関係
\[
V(-x)=(-1)^{n}W_{n}(x)
\]
チェビシェフ多項式の積表示
\[
T_{n}(x)=2^{n}\prod_{k=1}^{n}\left(x-\cos\left(\frac{2k-1}{2n}\pi\right)\right)
\]
(*)チェビシェフ多項式のロドリゲス公式
\[
T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}}
\]
第1種・第2種チェビシェフ多項式の定義
\[
T_{n}(\cos t)=\cos(nt)
\]