(*)チェビシェフ多項式の超幾何表示
チェビシェフ多項式の超幾何表示
(1)
\[ T_{n}(x)=F\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right) \](2)
\[ U_{n}(x)=\left(n+1\right)F\left(-n,n+2;\frac{3}{2};\frac{1-x}{2}\right) \](1)
略(2)
略ページ情報
タイトル | (*)チェビシェフ多項式の超幾何表示 |
URL | https://www.nomuramath.com/tehjbau1/ |
SNSボタン |
第2種チェビシェフ多項式の因数分解
\[
U_{2n-1}(x)=2U_{n-1}(x)T_{n}(x)
\]
第1種・第2種チェビシェフ多項式の定義
\[
T_{n}(\cos t)=\cos(nt)
\]
チェビシェフ多項式の積表示
\[
T_{n}(x)=2^{n}\prod_{k=1}^{n}\left(x-\cos\left(\frac{2k-1}{2n}\pi\right)\right)
\]
チェビシェフ多項式の級数表示
\[
T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right)
\]