(*)チェビシェフ多項式のロドリゲス公式
チェビシェフ多項式のロドリゲス公式
(1)
\[ T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}} \]
(2)
\[ U_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}(n+1)}{2^{n+1}\Gamma\left(n+\frac{3}{2}\right)\sqrt{1-x^{2}}}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n+\frac{1}{2}} \]
略
ページ情報
タイトル | (*)チェビシェフ多項式のロドリゲス公式 |
URL | https://www.nomuramath.com/igvbpmrb/ |
SNSボタン |
チェビシェフ多項式の積表示
\[
T_{n}(x)=2^{n}\prod_{k=1}^{n}\left(x-\cos\left(\frac{2k-1}{2n}\pi\right)\right)
\]
第3種・第4種チェビシェフ多項式の漸化式
\[
V_{k+1}(x)=2xV_{k}(x)-V_{k-1}(x)
\]
第3種・第4種チェビシェフ多項式の微分方程式
\[
\left(1-x^{2}\right)V_{n}''(x)-\left(2x-1\right)V_{n}'(x)+n(n+1)V_{n}(x)=0
\]
(*)チェビシェフ多項式の超幾何表示
\[
T_{n}(x)=F\left(-n,n;\frac{1}{2};\frac{1-x}{2}\right)
\]