完備リーマンゼータ関数の関数等式
完備リーマンゼータ関数
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
完備リーマンゼータ関数の関数等式
\[ \xi(s)=\xi(1-s) \]
\[ \xi(s)=\xi(1-s) \]
リーマンゼータの関数等式
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
ページ情報
タイトル | 完備リーマンゼータ関数の関数等式 |
URL | https://www.nomuramath.com/x2s85a76/ |
SNSボタン |
リーマン・ゼータ関数とディリクレ・イータ関数の定義
\[
\zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]
偶数ゼータ・奇数ゼータ・ゼータの総和
\[
\sum_{k=2}^{\infty}\left(\zeta\left(k\right)-1\right)=1
\]
ゼータ関数とイータ関数とガンマ関数
\[
\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}dx
\]
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]