リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係
\[ \zeta\left(s,1\right)=\zeta\left(s\right) \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数
\(\zeta\left(\alpha\right)\)はリーマン・ゼータ関数
\begin{align*} \zeta\left(s,1\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(1+k\right)^{s}}\\ & =\sum_{k=1}^{\infty}\frac{1}{k^{s}}\\ & =\zeta\left(s\right) \end{align*}
ページ情報
タイトル | リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の関係 |
URL | https://www.nomuramath.com/jxqyaxms/ |
SNSボタン |
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
リーマンゼータ関数の関数等式
\[
\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s)
\]
ζ(4k)の総和
\[
\sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi
\]
リーマン・ゼータ関数とディレクレ・イータ関数の導関数の特殊値
\[
\zeta'\left(0\right)=-\Log\sqrt{2\pi}
\]