第1種・第2種不完全ガンマ関数の微分
第1種・第2種不完全ガンマ関数の微分
(1)
\[ \frac{\partial\gamma\left(a,x\right)}{\partial x}=x^{a-1}e^{-x} \](2)
\[ \frac{\partial\Gamma\left(a,x\right)}{\partial x}=-x^{a-1}e^{-x} \]-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数(1)
\begin{align*} \frac{\partial\gamma\left(a,x\right)}{\partial x} & =\frac{\partial}{\partial x}\int_{0}^{x}t^{a-1}e^{-t}dt\\ & =x^{a-1}e^{-x} \end{align*}(2)
\begin{align*} \frac{\partial\Gamma\left(a,x\right)}{\partial x} & =\frac{\partial}{\partial x}\int_{x}^{\infty}t^{a-1}e^{-t}dt\\ & =-x^{a-1}e^{-x} \end{align*}ページ情報
タイトル | 第1種・第2種不完全ガンマ関数の微分 |
URL | https://www.nomuramath.com/zr12kgtz/ |
SNSボタン |
ポリガンマ(ディガンマ)関数の乗法公式
\[
\psi^{\left(m\right)}\left(nz\right)=\delta_{0,m}\log n+\frac{1}{n^{m+1}}\sum_{k=0}^{n-1}\psi^{\left(m\right)}\left(z+\frac{k}{n}\right)
\]
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]
ガンマ関数の1/2値
\[
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\]
ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
\[
\Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt
\]