第1種・第2種不完全ガンマ関数の微分
第1種・第2種不完全ガンマ関数の微分
(1)
\[ \frac{\partial\gamma\left(a,x\right)}{\partial x}=x^{a-1}e^{-x} \](2)
\[ \frac{\partial\Gamma\left(a,x\right)}{\partial x}=-x^{a-1}e^{-x} \]-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数(1)
\begin{align*} \frac{\partial\gamma\left(a,x\right)}{\partial x} & =\frac{\partial}{\partial x}\int_{0}^{x}t^{a-1}e^{-t}dt\\ & =x^{a-1}e^{-x} \end{align*}(2)
\begin{align*} \frac{\partial\Gamma\left(a,x\right)}{\partial x} & =\frac{\partial}{\partial x}\int_{x}^{\infty}t^{a-1}e^{-t}dt\\ & =-x^{a-1}e^{-x} \end{align*}ページ情報
タイトル | 第1種・第2種不完全ガンマ関数の微分 |
URL | https://www.nomuramath.com/zr12kgtz/ |
SNSボタン |
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]
ガンマ関数と階乗の関係
\[
\Gamma(n+1)=n!
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]
偶数と奇数の2重階乗
\[
\left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)}
\]