第1種・第2種不完全ガンマ関数の漸化式
第1種・第2種不完全ガンマ関数の漸化式
(1)
\[ \gamma\left(a+1,x\right)=a\gamma\left(a,x\right)-x^{a}e^{-x} \]
(2)
\[ \Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x} \]
-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数
(1)
\begin{align*} \gamma\left(a+1,x\right) & =\int_{0}^{x}t^{a}e^{-t}dt\\ & =-\left[t^{a}e^{-t}\right]_{0}^{x}+a\int_{0}^{x}t^{a-1}e^{-t}dt\\ & =a\gamma\left(a,x\right)-x^{a}e^{-x} \end{align*}
(2)
\begin{align*} \Gamma\left(a+1,x\right) & =\int_{x}^{\infty}t^{a}e^{-t}dt\\ & =-\left[t^{a}e^{-t}\right]_{x}^{\infty}+a\int_{x}^{\infty}t^{a-1}e^{-t}dt\\ & =a\Gamma\left(a,x\right)+x^{a}e^{-x} \end{align*}
ページ情報
タイトル | 第1種・第2種不完全ガンマ関数の漸化式 |
URL | https://www.nomuramath.com/jf1aac7r/ |
SNSボタン |
1次式の総乗と階乗
\[
\prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)}
\]
ガンマ関数の対数とリーマン・ゼータ関数
\[
\log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k}
\]
第2種不完全ガンマ関数とガンマ関数の比の極限
\[
\lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x}
\]
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]