クヌースの矢印表記の定義
クヌースの矢印表記の定義
\(b,n\in\mathbb{N}_{0}\)とする。
\[ a\uparrow^{n}b:=\begin{cases} ab & n=0\\ 1 & n\geq1\;\land\;b=0\\ \underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a} & otherwise \end{cases} \] これは、
\[ a\uparrow^{n}b=\begin{cases} ab & n=0\\ 1 & n\geq1\;\land\;b=0\\ a\uparrow^{n-1}\left(a\uparrow^{n}\left(b-1\right)\right) & otherwise \end{cases} \] と同じである。
\[ a\uparrow^{m}b\uparrow^{n}c=a\uparrow^{m}\left(b\uparrow^{n}c\right) \]
(1)定義
クヌースの矢印表記は以下で定義される。\(b,n\in\mathbb{N}_{0}\)とする。
\[ a\uparrow^{n}b:=\begin{cases} ab & n=0\\ 1 & n\geq1\;\land\;b=0\\ \underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a} & otherwise \end{cases} \] これは、
\[ a\uparrow^{n}b=\begin{cases} ab & n=0\\ 1 & n\geq1\;\land\;b=0\\ a\uparrow^{n-1}\left(a\uparrow^{n}\left(b-1\right)\right) & otherwise \end{cases} \] と同じである。
(2)結合法則
クヌースの矢印表記は右結合で定義される。\[ a\uparrow^{m}b\uparrow^{n}c=a\uparrow^{m}\left(b\uparrow^{n}c\right) \]
\(b\ne0\)のとき、
\begin{align*} a\uparrow^{n}b & =\underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a}\\ & =a\uparrow^{n-1}\underbrace{a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b-1\;copies\;of\;a}\\ & =a\uparrow^{n-1}\left(a\uparrow^{n}\left(b-1\right)\right) \end{align*}
\begin{align*} a\uparrow^{n}b & =\underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a}\\ & =a\uparrow^{n-1}\underbrace{a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b-1\;copies\;of\;a}\\ & =a\uparrow^{n-1}\left(a\uparrow^{n}\left(b-1\right)\right) \end{align*}
ページ情報
タイトル | クヌースの矢印表記の定義 |
URL | https://www.nomuramath.com/yqbnfypd/ |
SNSボタン |
ハイバー演算子の定義
\[
H_{n}\left(a,b\right):=\begin{cases}
b+1 & n=0\\
a+b & n=1\\
\underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a} & n=2,3,\cdots
\end{cases}
\]
テトレーションと対数
\[
H_{4}\left(a,n\right)=\log_{a}^{m\circ}H_{4}\left(a,n+m\right)
\]
ハイパー演算子の結合法則
\[
a^{\left(n\right)}\left(b^{\left(n\right)}c\right)\ne\left(a^{\left(n\right)}b\right)^{\left(n\right)}c
\]
アッカーマン関数の定義と解
\[
A\left(m,n\right)=2\uparrow^{m-2}\left(n+3\right)-3
\]