ハイパー演算子の優先順位
ハイパー演算子の優先順位
ハイパー演算子の結合性を左結合にしたものを
\begin{align*} I_{n+1}\left(a,b\right) & =a_{\left(n+1\right)}b\\ & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a} \end{align*}
で定義すると、
\[ I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a \]
となる。
-
\(a^{\left(n\right)}b\)はハイパー演算子
\begin{align*} I_{n+1}\left(a,b\right) & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a}\\ & =I_{n+1}\left(a,b-1\right)^{\left(n\right)}a \end{align*}
ページ情報
タイトル | ハイパー演算子の優先順位 |
URL | https://www.nomuramath.com/dctuzacs/ |
SNSボタン |
反復コンウェイのチェーン表記
\[
X\rightarrow\left(p+1\right)\rightarrow\left(q+1\right)=f^{p\circ}\left(X\right)
\]
コンウェイのチェーン表記の定義
\[
X\rightarrow\left(a+1\right)\rightarrow\left(b+1\right)=X\rightarrow\left\{ X\rightarrow a\rightarrow\left(b+1\right)\right\} \rightarrow b
\]
クヌースの矢印表記の定義
\[
a\uparrow^{n}b:=\begin{cases}
ab & n=0\\
1 & n\geq1\;\land\;b=0\\
\underbrace{a\uparrow^{n-1}a\uparrow^{n-1}\cdots\uparrow^{n-1}a}_{b\;copies\;of\;a} & otherwise
\end{cases}
\]
コンウェイのチェーン表記の優先順位
\begin{align*}
& a\rightarrow\left(b\rightarrow c\right)\\
& a\rightarrow b\rightarrow c\\
& \left(a\rightarrow b\right)\rightarrow c
\end{align*}