完備距離空間の部分集合は完備とは限らない
完備距離空間の部分集合は完備とは限らない
完備距離空間\(\left(X,d_{X}\right)\)の部分集合\(A\subseteq X\)は完備とは限らない。
完備距離空間\(\left(X,d_{X}\right)\)の部分集合\(A\subseteq X\)は完備とは限らない。
反例で示す。
何故なら実数列\(\left(\frac{1}{n}\right)_{n\in\mathbb{N}}\)は\(\left(0,1\right)\)に含まれるが、その収束先の0は\(\left(0,1\right)\)に含まれないからである。
何故なら\(x_{1}=1,x_{2}=1.4,x_{3}=1.41\)と\(x_{n}\)を\(\sqrt{2}\)の小数第\(n\)位までの実数とすると、\(x_{n}\in\mathbb{Q}\)であるが\(\sqrt{2}\notin\mathbb{Q}\)である。
-
\(\mathbb{R}\)は完備であるがその部分集合\(\left(0,1\right)\)は完備ではない。何故なら実数列\(\left(\frac{1}{n}\right)_{n\in\mathbb{N}}\)は\(\left(0,1\right)\)に含まれるが、その収束先の0は\(\left(0,1\right)\)に含まれないからである。
-
\(\mathbb{R}\)は完備であるがその部分集合\(\mathbb{Q}\)は完備ではない。何故なら\(x_{1}=1,x_{2}=1.4,x_{3}=1.41\)と\(x_{n}\)を\(\sqrt{2}\)の小数第\(n\)位までの実数とすると、\(x_{n}\in\mathbb{Q}\)であるが\(\sqrt{2}\notin\mathbb{Q}\)である。
ページ情報
| タイトル | 完備距離空間の部分集合は完備とは限らない |
| URL | https://www.nomuramath.com/xutqma6u/ |
| SNSボタン |
距離空間での集積点と閉包の点列による別定義
\[
x\in A^{d}\leftrightarrow\exists\left(x_{n}\right)_{n=1}^{\infty}\subseteq A\setminus\left\{ x\right\} ,\lim_{n\rightarrow\infty}x_{n}=x
\]
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
距離空間での連続を開近傍を使って表現
\[
\forall\epsilon>0,\exists\delta>0,f\left(U_{\delta}\left(a\right)\right)\subseteq U_{\epsilon}\left(f\left(a\right)\right)
\]
2つの距離関数と点列・開集合・閉集合の関係

