完備距離空間の部分集合は完備とは限らない
完備距離空間の部分集合は完備とは限らない
完備距離空間\(\left(X,d_{X}\right)\)の部分集合\(A\subseteq X\)は完備とは限らない。
完備距離空間\(\left(X,d_{X}\right)\)の部分集合\(A\subseteq X\)は完備とは限らない。
反例で示す。
何故なら実数列\(\left(\frac{1}{n}\right)_{n\in\mathbb{N}}\)は\(\left(0,1\right)\)に含まれるが、その収束先の0は\(\left(0,1\right)\)に含まれないからである。
何故なら\(x_{1}=1,x_{2}=1.4,x_{3}=1.41\)と\(x_{n}\)を\(\sqrt{2}\)の小数第\(n\)位までの実数とすると、\(x_{n}\in\mathbb{Q}\)であるが\(\sqrt{2}\notin\mathbb{Q}\)である。
-
\(\mathbb{R}\)は完備であるがその部分集合\(\left(0,1\right)\)は完備ではない。何故なら実数列\(\left(\frac{1}{n}\right)_{n\in\mathbb{N}}\)は\(\left(0,1\right)\)に含まれるが、その収束先の0は\(\left(0,1\right)\)に含まれないからである。
-
\(\mathbb{R}\)は完備であるがその部分集合\(\mathbb{Q}\)は完備ではない。何故なら\(x_{1}=1,x_{2}=1.4,x_{3}=1.41\)と\(x_{n}\)を\(\sqrt{2}\)の小数第\(n\)位までの実数とすると、\(x_{n}\in\mathbb{Q}\)であるが\(\sqrt{2}\notin\mathbb{Q}\)である。
ページ情報
タイトル | 完備距離空間の部分集合は完備とは限らない |
URL | https://www.nomuramath.com/xutqma6u/ |
SNSボタン |
離散位相は距離化可能
離散位相$\left(X,2^{X}\right)$は離散距離空間$\left(X,d\right)$で距離化可能である。
pノルム(一般化ユークリッド空間距離)は距離空間
\[
d_{m}\left(\boldsymbol{x},\boldsymbol{y}\right)=\left(\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|^{m}\right)^{\frac{1}{m}}=\left\Vert \boldsymbol{x}-\boldsymbol{y}\right\Vert _{m}
\]
マンハッタン距離は距離空間
\[
d_{1}\left(\boldsymbol{x},\boldsymbol{y}\right)=\sum_{k=1}^{n}\left|x_{k}-y_{k}\right|
\]
距離空間での開集合と閉集合の定義
\[
\forall x\in A,\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]