無相関のときに成り立つ関係
確率変数\(X,Y\)が無相関のとき、
\[ E(XY)=E(X)E(Y) \]
となる。
無相関のとき\(Cov(X,Y)=0\)となり、
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*}
より、
\[
E(XY)=E(X)E(Y)
\]
ページ情報
タイトル | 無相関のときに成り立つ関係 |
URL | https://www.nomuramath.com/xgye7qg2/ |
SNSボタン |
相補誤差関数と虚数誤差関数の表示
\[
erfc(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}dt
\]
独立と無相関の定義
\[
P\left(X=x,Y=y\right)=P(X=x)P(Y=y)
\]
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
相関係数の基本的性質
\[
\rho(X,aY+b)=\rho(X,Y)
\]