最大値・最小値と絶対値の関係
最大値・最小値と絶対値の関係
\(x\in\mathbb{R}\)とする。
\(x\in\mathbb{R}\)とする。
(1)
\[ \min\left(-x,x\right)=-\left|x\right| \](2)
\[ \max\left(-x,x\right)=\left|x\right| \](1)
\begin{align*} \min\left(-x,x\right) & =\begin{cases} -x & 0\leq x\\ x & x<0 \end{cases}\\ & =-\left|x\right| \end{align*}(2)
\begin{align*} \max\left(-x,x\right) & =\begin{cases} -x & x<0\\ x & 0\leq x \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
タイトル | 最大値・最小値と絶対値の関係 |
URL | https://www.nomuramath.com/xcfbaj7y/ |
SNSボタン |
直交曲線座標での性質
\[
h_{i}\boldsymbol{\nabla}q_{i}=\frac{1}{h_{i}}\frac{\partial\boldsymbol{r}}{\partial q_{i}}
\]
上限位相空間・下限位相空間は距離化不可能
ユークリッドの互除法
\[
\gcd(a,b)=\gcd(b,r)
\]
逆2乗の別表示
\[
\frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx
\]