最大値・最小値と絶対値の関係
最大値・最小値と絶対値の関係
\(x\in\mathbb{R}\)とする。
\(x\in\mathbb{R}\)とする。
(1)
\[ \min\left(-x,x\right)=-\left|x\right| \](2)
\[ \max\left(-x,x\right)=\left|x\right| \](1)
\begin{align*} \min\left(-x,x\right) & =\begin{cases} -x & 0\leq x\\ x & x<0 \end{cases}\\ & =-\left|x\right| \end{align*}(2)
\begin{align*} \max\left(-x,x\right) & =\begin{cases} -x & x<0\\ x & 0\leq x \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
タイトル | 最大値・最小値と絶対値の関係 |
URL | https://www.nomuramath.com/xcfbaj7y/ |
SNSボタン |
距離空間でのε-近傍・開集合・閉集合・開集合全体の集合・開集合族の定義
\[
U_{\epsilon}\left(a\right)=\left\{ x\in X;d\left(x,a\right)<\epsilon\right\}
\]
ベータ関数の絶対収束条件
ベータ関数$B\left(p,q\right)$は$\Re\left(p\right)>0\;\land\;\Re\left(q\right)>0$で絶対収束
互いに素な集合と対角集合の関係
\[
A\cap B=\emptyset\Leftrightarrow\left(A\times B\right)\cap\Delta_{X}=\emptyset
\]
上限・下限と上極限・下極限の積の大小関係
\[
\left(\sup_{n\in\mathbb{N}}a_{n}\right)\left(\inf_{n\in\mathbb{N}}b_{n}\right)\leq\sup_{n\in\mathbb{N}}\left(a_{n}b_{n}\right)
\]