最大値・最小値と絶対値の関係
最大値・最小値と絶対値の関係
\(x\in\mathbb{R}\)とする。
\(x\in\mathbb{R}\)とする。
(1)
\[ \min\left(-x,x\right)=-\left|x\right| \](2)
\[ \max\left(-x,x\right)=\left|x\right| \](1)
\begin{align*} \min\left(-x,x\right) & =\begin{cases} -x & 0\leq x\\ x & x<0 \end{cases}\\ & =-\left|x\right| \end{align*}(2)
\begin{align*} \max\left(-x,x\right) & =\begin{cases} -x & x<0\\ x & 0\leq x \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
タイトル | 最大値・最小値と絶対値の関係 |
URL | https://www.nomuramath.com/xcfbaj7y/ |
SNSボタン |
中央2項係数の値
\[
C\left(2n,n\right)=4^{n}\left(-1\right)^{n}C\left(-\frac{1}{2},n\right)
\]
二項係数とベータ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}4^{n}B(n,n)=2\sqrt{\pi}
\]
距離化可能の定義
逆三角関数の負角、余角、逆数
\[
\cos^{\bullet}x+\sin^{\bullet}x=\frac{\pi}{2}
\]