最大値・最小値と絶対値の関係
最大値・最小値と絶対値の関係
\(x\in\mathbb{R}\)とする。
\(x\in\mathbb{R}\)とする。
(1)
\[ \min\left(-x,x\right)=-\left|x\right| \](2)
\[ \max\left(-x,x\right)=\left|x\right| \](1)
\begin{align*} \min\left(-x,x\right) & =\begin{cases} -x & 0\leq x\\ x & x<0 \end{cases}\\ & =-\left|x\right| \end{align*}(2)
\begin{align*} \max\left(-x,x\right) & =\begin{cases} -x & x<0\\ x & 0\leq x \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
| タイトル | 最大値・最小値と絶対値の関係 |
| URL | https://www.nomuramath.com/xcfbaj7y/ |
| SNSボタン |
ヘロンの公式
\[
S=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}
\]
有限位相での分離公理(離散・距離・T4・T3・T2・T1・T0)同士の関係
対数同士の積の積分
\[
\int_{0}^{1}\log\left(x\right)\log\left(1+x\right)dx=?
\]
『対数と偏角の性質』を更新しました。

