行列の指数関数の定義

行列の指数関数の定義
\(n\)次正方行列\(A\)の指数関数\(\exp\left(A\right)\)を
\[ \exp\left(A\right)=\sum_{k-0}^{\infty}\frac{A^{k}}{k!} \] で定義する。
\(A\)の指数関数は\(e^{A}\)でも表される。
対角行列の指数関数は
\begin{align*} \exp\left(\mathrm{diag}\left(a_{1},a_{2},\cdots,a_{n}\right)\right) & =\sum_{k=0}^{\infty}\frac{\mathrm{diag}^{k}\left(a_{1},a_{2},\cdots,a_{n}\right)}{k!}\\ & =\sum_{k=0}^{\infty}\frac{\mathrm{diag}\left(a_{1}^{k},a_{2}^{k},\cdots,a_{n}^{k}\right)}{k!}\\ & =\mathrm{diag}\left(\sum_{k=0}^{\infty}\frac{a_{1}^{k}}{k!},\sum_{k=0}^{\infty}\frac{a_{2}^{k}}{k!},\cdots,\sum_{k=0}^{\infty}\frac{a_{n}^{k}}{k!}\right)\\ & =\mathrm{diag}\left(e^{a_{1}},e^{a_{2}},\cdots,e^{a_{n}}\right) \end{align*} となります。
行列の指数関数の例

(1)

\begin{align*} \exp\left(\begin{array}{cc} 1 & 0\\ 0 & 2 \end{array}\right) & =\sum_{k-0}^{\infty}\frac{1}{k!}\left(\begin{array}{cc} 1 & 0\\ 0 & 2 \end{array}\right)^{k}\\ & =\sum_{k-0}^{\infty}\frac{1}{k!}\left(\begin{array}{cc} 1 & 0\\ 0 & 2^{k} \end{array}\right)\\ & =\left(\begin{array}{cc} \sum_{k-0}^{\infty}\frac{1}{k!} & 0\\ 0 & \sum_{k-0}^{\infty}\frac{1}{k!}2^{k} \end{array}\right)\\ & =\left(\begin{array}{cc} e & 0\\ 0 & e^{2} \end{array}\right) \end{align*}

(2)

\begin{align*} \exp\left(\begin{array}{cc} -1 & 2\\ -3 & 4 \end{array}\right) & =\sum_{k-0}^{\infty}\frac{1}{k!}\left(\begin{array}{cc} -1 & 2\\ -3 & 4 \end{array}\right)^{k}\\ & =\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)\left(\sum_{k-0}^{\infty}\frac{1}{k!}\left(\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)^{-1}\left(\begin{array}{cc} -1 & 2\\ -3 & 4 \end{array}\right)\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)\right)^{k}\right)\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)^{-1}\\ & =\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)\left(\sum_{k-0}^{\infty}\frac{1}{k!}\left(\begin{array}{cc} 1 & 0\\ 0 & 2 \end{array}\right)^{k}\right)\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)^{-1}\\ & =\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)\left(\sum_{k-0}^{\infty}\frac{1}{k!}\left(\begin{array}{cc} 1 & 0\\ 0 & 2^{k} \end{array}\right)\right)\left(\begin{array}{cc} 3 & -2\\ -1 & 1 \end{array}\right)\\ & =\left(\begin{array}{cc} 1 & 2\\ 1 & 3 \end{array}\right)\left(\begin{array}{cc} e & 0\\ 0 & e^{2} \end{array}\right)\left(\begin{array}{cc} 3 & -2\\ -1 & 1 \end{array}\right)\\ & =\left(\begin{array}{cc} 3e-2e^{2} & -2e+2e^{2}\\ 3e-3e^{2} & -2e+3e^{2} \end{array}\right) \end{align*}
スポンサー募集!

ページ情報
タイトル
行列の指数関数の定義
URL
https://www.nomuramath.com/xa7iv4x0/
SNSボタン