ウォリス積分の同表示
ウォリス積分は以下の値に等しい
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\cos^{n}\left(\theta-\frac{\pi}{2}\right)d\theta\\
& =\int_{0}^{\frac{\pi}{2}}\cos^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリス積分の同表示 |
URL | https://www.nomuramath.com/vyufzw14/ |
SNSボタン |
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]
中央2項係数の総和
\[
\sum_{k=0}^{\infty}C^{-1}\left(2k,k\right)=\frac{4}{3}+\frac{2\sqrt{3}\pi}{27}
\]
logの2乗の級数表示
\[
\log^{2}(1-x)=2\sum_{k=1}^{\infty}\frac{H_{k}}{k+1}x^{k+1}
\]
連続関数の和・積・商