冪集合の定義
冪集合の定義
ある集合\(A\)の部分集合全体の集合族を冪集合といい\(2^{A}\)で表す。
ある集合\(A\)の部分集合全体の集合族を冪集合といい\(2^{A}\)で表す。
(1)
\(A\in2^{A}\)は成り立つが、一般に\(A\nsubseteq2^{A}\)であるので注意。また\(\emptyset\in2^{A}\)と\(\emptyset\subseteq2^{A}\)はどちらも成り立つ。
(2)
\(A=\left\{ a,b\right\} \)のとき\(2^{A}=\left\{ \emptyset,\left\{ a\right\} ,\left\{ b\right\} ,\left\{ a,b\right\} \right\} \)なので\(A\in2^{A}\)は成り立つが、\(A\subseteq2^{A}\)は成り立たないので\(A\nsubseteq2^{A}\)となる。また冪集合は必ず空集合を含むので\(\emptyset\in2^{A}\)が成り立ち、空集合は任意の集合の部分集合であるので、\(\emptyset\subseteq2^{A}\)が成り立つ。
(3)
空集合の冪集合は\(2^{\emptyset}=\left\{ \emptyset\right\} \)となる。何故なら\(B\subseteq A\leftrightarrow B\in2^{A}\)なので\(A=\emptyset\)とすると、\(B\subseteq\emptyset\leftrightarrow B\in2^{\emptyset}\)となり、\(\emptyset\)の部分集合は\(\emptyset\)のみなので\(B=\emptyset\)とすると\(\emptyset\in2^{\emptyset}\)となり、\(\left\{ \emptyset\right\} =2^{\emptyset}\)となる。
また、
\begin{align*} 2^{2^{\emptyset}} & =2^{\left\{ \emptyset\right\} }\\ & =\left\{ \emptyset,\left\{ \emptyset\right\} \right\} \end{align*} \begin{align*} 2^{2^{2^{\emptyset}}} & =2^{\left\{ \emptyset,\left\{ \emptyset\right\} \right\} }\\ & =\left\{ \emptyset,\left\{ \emptyset\right\} ,\left\{ \left\{ \emptyset\right\} \right\} ,\left\{ \emptyset,\left\{ \emptyset\right\} \right\} \right\} \end{align*} となる。
(4)
1元集合\(\left\{ a\right\} \)の冪集合は\(2^{\left\{ a\right\} }=\left\{ \emptyset,\left\{ a\right\} \right\} \)となる。ページ情報
| タイトル | 冪集合の定義 |
| URL | https://www.nomuramath.com/v93jlx3c/ |
| SNSボタン |
ブロック対角行列の固有多項式と固有値
\[
p_{A}\left(\lambda\right)=\prod_{k\in\left\{ 1,2,\cdots,r\right\} }p_{A_{k}}\left(\lambda\right)
\]
ブロック対角行列の逆行列
\[
\left(\begin{array}{cccc}
A_{1,1} & O & \cdots & O\\
O & A_{2,2} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{p,p}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
A_{1,1}^{-1} & O & \cdots & O\\
O & A_{2,2}^{-1} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{p,p}^{-1}
\end{array}\right)
\]
対称ブロック分けのトーレス
\[
\tr\left(\begin{array}{cccc}
A_{1,1} & A_{1,2} & \cdots & A_{1,p}\\
A_{2,1} & A_{2,2} & \ddots & A_{2,p}\\
\vdots & \ddots & \ddots & \vdots\\
A_{p,1} & A_{p,2} & \cdots & A_{p,p}
\end{array}\right)=\sum_{k=1}^{p}\tr\left(A_{k,k}\right)
\]
ブロック対角行列の和・積・べき乗
\[
\left(\begin{array}{cccc}
A_{11} & O & \cdots & O\\
O & A_{22} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{pp}
\end{array}\right)^{k}=\left(\begin{array}{cccc}
A_{11}^{k} & O & \cdots & O\\
O & A_{22}^{k} & \ddots & O\\
\vdots & \ddots & \ddots & \vdots\\
O & O & \cdots & A_{pp}^{k}
\end{array}\right)
\]

