ソフィー・ジェルマンの恒等式
ソフィー・ジェルマンの恒等式
\[ a^{4}+4b^{4}=\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right) \]
\begin{align*} a^{4}+4b^{4} & =a^{4}+4a^{2}b^{2}+4b^{4}-4a^{2}b^{2}\\ & =\left(a^{2}+2b^{2}\right)^{2}-\left(2ab\right)^{2}\\ & =\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right) \end{align*}
ページ情報
タイトル | ソフィー・ジェルマンの恒等式 |
URL | https://www.nomuramath.com/uzape5sg/ |
SNSボタン |
n乗同士の和と差の因数分解
\[
a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right)
\]
相反方程式の定義と解法
\[
\sum_{k=0}^{n}a_{k}x^{k}=0
\]
4次方程式標準形の解き方
\[
y=\frac{\mp_{1}\sqrt{2u-p}\pm_{2}\sqrt{-p-2u-\frac{4q}{2\sqrt{2u-p}}}}{2}
\]
複二次式の定義と因数分解
\[
a_{4}x^{4}+a_{2}x^{2}+a_{0}=\frac{1}{4a_{4}}\left(2a_{4}x^{2}+a_{2}+\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right)\left(2a_{4}x^{2}+a_{2}-\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right)
\]