差積の定義
差積の定義
\(n\)個の変数\(x_{1},\cdots,x_{n}\)の差積\(\Delta\left(x_{1},\cdots,x_{n}\right)\)を以下で定義する。
\[ \Delta\left(x_{1},\cdots,x_{n}\right):=\prod_{1\leq i<j\leq n}\left(x_{i}-x_{j}\right) \]
ページ情報
タイトル | 差積の定義 |
URL | https://www.nomuramath.com/l0t9ukdj/ |
SNSボタン |
オイラーの4平方恒等式
\[
\left(a_{0}^{\;2}+a_{1}^{\;2}+a_{2}^{\;2}+a_{3}^{\;2}\right)\left(b_{0}^{\;2}+b_{1}^{\;2}+b_{2}^{\;2}+b_{3}^{\;2}\right)=\left(a_{0}b_{0}-a_{1}b_{1}-a_{2}b_{2}-a_{3}b_{3}\right)^{2}+\left(a_{0}b_{1}+a_{1}b_{0}+a_{2}b_{3}-a_{3}b_{2}\right)^{2}+\left(a_{0}b_{2}-a_{1}b_{3}+a_{2}b_{0}+a_{3}b_{1}\right)^{2}+\left(a_{0}b_{3}+a_{1}b_{2}-a_{2}b_{1}+a_{3}b_{0}\right)^{2}
\]
n乗根の因数分解
\[
z^{n}-1=\prod_{k=1}^{n}\left(z-e^{\frac{2\pi}{n}ki}\right)
\]
ブラーマグプタ2平方恒等式
\[
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=\left(ac\pm bd\right)^{2}+\left(ad\mp bc\right)^{2}
\]
交代式の因数分解
\[
\text{交代式}=\text{差積}\times\text{対称式}
\]