(*)原始根定理
原始根定理
\(p\)を素数とするとき、原始根の個数は\(\varphi(p-1)\)である。
\(p\)を素数とするとき、原始根の個数は\(\varphi(p-1)\)である。
略
ページ情報
| タイトル | (*)原始根定理 |
| URL | https://www.nomuramath.com/uv83705z/ |
| SNSボタン |
n番目の素数の式
\[
P\left(n\right)=1+\sum_{k=1}^{2^{n}}\left\lfloor \sqrt[n]{\frac{n}{\sum_{j=1}^{k}\left\lfloor \cos^{2}\left(\frac{\left(j-1\right)!+1}{j}\pi\right)\right\rfloor }}\right\rfloor
\]
(*)平方剰余の相互法則と補充法則
\[
QR(p,q)QR(q,p)=\left(-1\right)^{\frac{p-1}{2}\frac{q-1}{2}}
\]
オイラーの規準
\[
QR(a,p)\overset{p}{\equiv}a^{\frac{p-1}{2}}
\]
オイラーのトーシェント関数の性質
\[
\phi(p^{n})=p^{n}-p^{n-1}
\]

