(*)原始根定理
原始根定理
\(p\)を素数とするとき、原始根の個数は\(\varphi(p-1)\)である。
\(p\)を素数とするとき、原始根の個数は\(\varphi(p-1)\)である。
略
ページ情報
タイトル | (*)原始根定理 |
URL | https://www.nomuramath.com/uv83705z/ |
SNSボタン |
オイラーのトーシェント関数の定義
\[
\phi\left(n\right)=\left|\left\{ k\in\mathbb{N};1\leq k\leq n,\gcd\left(k,n\right)=1\right\} \right|
\]
二元不定方程式が整数解を持つ
\[
ax+by=c\text{が整数解を持つ}\Leftrightarrow c\text{は}\gcd(a,b)\text{の倍数}
\]
ユークリッドの互除法
\[
\gcd(a,b)=\gcd(b,r)
\]
位数と原始根の定義
\[
a^{n}\overset{p}{\equiv}1
\]