n乗根の因数分解
n乗根の因数分解
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ z^{n}-1=\prod_{k=1}^{n}\left(z-e^{\frac{2\pi}{n}ki}\right) \]
(2)
\[ z^{n}-\alpha=\prod_{k=1}^{n}\left(z-\alpha^{\frac{1}{n}}e^{\frac{2\pi}{n}ki}\right) \]
(1)
\(z^{n}=1\)の解は\(z_{k}=e^{\frac{2\pi}{n}ki}\;,\;k=1,\cdots,n\)であるので因数定理より、
\[ z^{n}-1=\prod_{k=1}^{n}\left(z-e^{\frac{2\pi}{n}ki}\right) \]
となる。
(2)
\begin{align*} z^{n}-\alpha & =\alpha\left(\left(\alpha^{-\frac{1}{n}}z\right)^{n}-1\right)\\ & =\alpha\prod_{k=1}^{n}\left(\alpha^{-\frac{1}{n}}z-e^{\frac{2\pi}{n}ki}\right)\\ & =\prod_{k=1}^{n}\left(z-\alpha^{\frac{1}{n}}e^{\frac{2\pi}{n}ki}\right) \end{align*}
ページ情報
タイトル | n乗根の因数分解 |
URL | https://www.nomuramath.com/uay44uwk/ |
SNSボタン |
3次方程式の標準形
\[
X^{3}+pX+q=0
\]
差積の定義
\[
\Delta\left(x_{1},\cdots,x_{n}\right):=\prod_{1\leq i<j\leq n}\left(x_{i}-x_{j}\right)
\]
4次方程式の標準形
\[
X^{4}+pX^{2}+qX+r=0
\]
2次式の実数の範囲で因数分解
\[
a^{2}\pm2ab+b^{2}=\left(a\pm b\right)^{2}
\]