ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
(1)ガンマ関数
\[ \Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt\qquad\Re(z)>0 \](2)ディガンマ関数
\[ \psi(z)=\frac{d}{dz}\log\Gamma(z) \](3)ポリガンマ関数
\[ \psi^{(n)}(z)=\frac{d^{n}}{dz^{n}}\psi(z)=\frac{d^{n+1}}{dz^{n+1}}\log\Gamma(z) \]ページ情報
タイトル | ガンマ関数・ディガンマ関数・ポリガンマ関数の定義 |
URL | https://www.nomuramath.com/u3m5jiu0/ |
SNSボタン |
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]
ガンマ関数のハンケル積分表示
\[
\Gamma\left(z\right)=\frac{i}{2\sin\left(\pi z\right)}\int_{C}\left(-\tau\right)^{z-1}e^{-\tau}d\tau
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]
第2種不完全ガンマ関数とガンマ関数の比の極限
\[
\lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x}
\]