ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
(1)ガンマ関数
\[ \Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt\qquad\Re(z)>0 \](2)ディガンマ関数
\[ \psi(z)=\frac{d}{dz}\log\Gamma(z) \](3)ポリガンマ関数
\[ \psi^{(n)}(z)=\frac{d^{n}}{dz^{n}}\psi(z)=\frac{d^{n+1}}{dz^{n+1}}\log\Gamma(z) \]ページ情報
タイトル | ガンマ関数・ディガンマ関数・ポリガンマ関数の定義 |
URL | https://www.nomuramath.com/u3m5jiu0/ |
SNSボタン |
ガンマ関数の対数とリーマン・ゼータ関数
\[
\log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k}
\]
ガウスの乗法公式
\[
\Gamma(nz)=\frac{n^{nz-\frac{1}{2}}}{\left(2\pi\right)^{\frac{n-1}{2}}}\prod_{k=0}^{n-1}\Gamma\left(z+\frac{k}{n}\right)
\]
負の整数の階乗の商
\[
\frac{\left(-m\right)!}{\left(-n\right)!}=\left(-1\right)^{n-m}\frac{\Gamma\left(n\right)}{\Gamma\left(m\right)}
\]
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]