ガンマ関数と階乗の関係
\(n\in\mathbb{N}_{0}\)とすると、以下が成り立つ。
\[ \Gamma(n+1)=n! \]
\[ \Gamma(n+1)=n! \]
\begin{align*}
\Gamma(n+1) & =\Gamma(1)\prod_{k=1}^{n}k\\
& =n!
\end{align*}
ページ情報
タイトル | ガンマ関数と階乗の関係 |
URL | https://www.nomuramath.com/tpc82pia/ |
SNSボタン |
ガンマ関数の1/2値
\[
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\]
ディガンマ関数・ポリガンマ関数の相反公式
\[
\psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right)
\]
第2種不完全ガンマ関数とガンマ関数の比の極限
\[
\lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x}
\]
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]