ガンマ関数と階乗の関係
\(n\in\mathbb{N}_{0}\)とすると、以下が成り立つ。
\[ \Gamma(n+1)=n! \]
\[ \Gamma(n+1)=n! \]
\begin{align*}
\Gamma(n+1) & =\Gamma(1)\prod_{k=1}^{n}k\\
& =n!
\end{align*}
ページ情報
| タイトル | ガンマ関数と階乗の関係 |
| URL | https://www.nomuramath.com/tpc82pia/ |
| SNSボタン |
ディガンマ関数の積分表示
\[
\psi\left(z\right)=-\gamma+\int_{0}^{1}\frac{1-x^{z-1}}{1-x}dx
\]
第1種・第2種不完全ガンマ関数の整数値
\[
\gamma\left(n+1,x\right)=-e^{-x}\sum_{k=0}^{n}\left(P\left(n,k\right)x^{n-k}\right)+n!
\]
ポリガンマ(ディガンマ)関数の乗法公式
\[
\psi^{\left(m\right)}\left(nz\right)=\delta_{0,m}\log n+\frac{1}{n^{m+1}}\sum_{k=0}^{n-1}\psi^{\left(m\right)}\left(z+\frac{k}{n}\right)
\]
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]

