三角関数の合成
三角関数の合成
(1)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*} \begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}(2)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta) \end{align*} \begin{align*} \beta & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*}(1)
\begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}+\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*}
(2)
(1)より、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha)\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta+\alpha-\frac{\pi}{2})\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta)\qquad,\qquad\beta=\frac{\pi}{2}-\alpha \end{align*} \begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*} 同様に、
\begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arccos\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} これより、
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}
(2)別解
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}+\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\cos\beta+\sin\theta\sin\beta\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta-\beta) \end{align*}
ページ情報
タイトル | 三角関数の合成 |
URL | https://www.nomuramath.com/ti9axpox/ |
SNSボタン |
正接関数・双曲線正接関数の多重対数関数表示
\[
\tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right)
\]
三角関数と双曲線関数の積分
\[
\int f(\cos x,\sin x)dx=\int f\left(\frac{1-t^{2}}{1+t^{2}},\frac{2t}{1+t^{2}}\right)\frac{2}{1+t^{2}}dt\cnd{t=\tan\frac{x}{2}}
\]
逆三角関数と逆双曲線関数の級数表示
\[
\sin^{\bullet}x=\sum_{k=0}^{\infty}\frac{C\left(2k,k\right)}{4^{k}(2k+1)}x^{2k+1}\qquad,(|x|\leq1)
\]
双曲線関数と三角関数の級数展開
\[
\tanh x=\sum_{k=1}^{\infty}\frac{2^{2k}\left(2^{2k}-1\right)B_{2k}}{(2k)!}x{}^{2k-1}
\]