三角関数と双曲線関数の積分
三角関数の積分
(1)
\[ \int f(\sin x)\cos xdx=\int f(t)dt\cnd{t=\sin x} \](2)
\[ \int f(\cos x)\sin xdx=-\int f(t)dt\cnd{t=\cos x} \](3)
\[ \int f(\tan x)\frac{1}{\cos^{2}x}dx=\int f(t)dt\cnd{t=\tan x} \](4)
\[ \int f(\cos x,\sin x)dx=\int f\left(\frac{1-t^{2}}{1+t^{2}},\frac{2t}{1+t^{2}}\right)\frac{2}{1+t^{2}}dt\cnd{t=\tan\frac{x}{2}} \](1)
\begin{align*} \int f(\sin x)\cos xdx & =\int f(\sin x)d\left(\sin x\right)\\ & =\int f(t)dt\cnd{t=\sin x} \end{align*}(2)
\begin{align*} \int f(\cos x)\sin xdx & =-\int f(\cos x)d\left(\cos x\right)\\ & =-\int f(t)dt\cnd{t=\cos x} \end{align*}(3)
\begin{align*} \int f(\tan x)\frac{1}{\cos^{2}x}dx & =\int f(\tan x)d\left(\tan x\right)\\ & =\int f(t)dt\cnd{t=\tan x} \end{align*}(4)
\begin{align*} \int f(\cos x,\sin x)dx & =\int f\left(\cos^{2}\left(\frac{x}{2}\right)-\sin^{2}\left(\frac{x}{2}\right),2\sin x\cos x\right)dx\\ & =\int f\left(\frac{1-\tan^{2}\frac{x}{2}}{1+\tan^{2}\frac{x}{2}},\frac{2\tan\frac{x}{2}}{1+\tan^{2}\frac{x}{2}}\right)dx\\ & =\int f\left(\frac{1-t^{2}}{1+t^{2}},\frac{2t}{1+t^{2}}\right)d\left(2\tan^{\bullet}t\right)\cnd{t=\tan\frac{x}{2}}\\ & =\int f\left(\frac{1-t^{2}}{1+t^{2}},\frac{2t}{1+t^{2}}\right)\frac{2}{1+t^{2}}dt \end{align*}双曲線関数の積分
(1)
\[ \int f(\sinh x)\cosh xdx=\int f(t)dt\cnd{t=\sinh x} \](2)
\[ \int f(\cosh x)\sinh xdx=\int f(t)dt\cnd{t=\cosh x} \](3)
\[ \int f(\tanh x)\frac{1}{\cosh^{2}x}dx=\int f(t)dt\cnd{t=\tanh x} \](4)
\[ \int f(\cosh x,\sinh x)dx==\int f\left(\frac{1+t^{2}}{1-t^{2}},\frac{2t}{1-t^{2}}\right)\frac{2}{1-t^{2}}dt\cnd{t=\tanh\frac{x}{2}} \](1)
\begin{align*} \int f(\sinh x)\cosh xdx & =\int f(\sinh x)d\left(\sinh x\right)\\ & =\int f(t)dt\cnd{t=\sinh x} \end{align*}(2)
\begin{align*} \int f(\cosh)\sinh xdx & =\int f(\cosh x)d\left(\cosh x\right)\\ & =\int f(t)dt\cnd{t=\cosh x} \end{align*}(3)
\begin{align*} \int f(\tanh x)\frac{1}{\cosh^{2}x}dx & =\int f(\tanh x)d\left(\tanh x\right)\\ & =\int f(t)dt\cnd{t=\tanh x} \end{align*}(4)
\begin{align*} \int f(\cosh x,\sinh x)dx & =\int f\left(\cosh^{2}\left(\frac{x}{2}\right)+\sinh^{2}\left(\frac{x}{2}\right),2\sinh x\cosh x\right)dx\\ & =\int f\left(\frac{1+\tanh^{2}\frac{x}{2}}{1-\tanh^{2}\frac{x}{2}},\frac{2\tanh\frac{x}{2}}{1-\tanh^{2}\frac{x}{2}}\right)dx\\ & =\int f\left(\frac{1+t^{2}}{1-t^{2}},\frac{2t}{1-t^{2}}\right)d\left(2\tanh^{\bullet}t\right)\cnd{t=\tanh\frac{x}{2}}\\ & =\int f\left(\frac{1+t^{2}}{1-t^{2}},\frac{2t}{1-t^{2}}\right)\frac{2}{1-t^{2}}dt \end{align*}ページ情報
タイトル | 三角関数と双曲線関数の積分 |
URL | https://www.nomuramath.com/gevgau89/ |
SNSボタン |
三角関数の合成
\[
a\sin\theta+b\cos\theta =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha)
\]
逆三角関数の三角関数と逆双曲線関数の双曲線関数
\[
\sin\Cos^{\bullet}z=\sqrt{1-z^{2}}
\]
三角関数・双曲線関数の実部と虚部
\[
\sin z=\sin\left(\Re z\right)\cosh\left(\Im z\right)+i\cos\left(\Re z\right)\sinh\left(\Im z\right)
\]
三角関数(双曲線関数)の対数とリーマン・ゼータ関数
\[
\log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k}
\]