距離関数は連続関数
距離関数は連続関数
距離空間\(\left(X,d\right)\)の距離関数\(d:X\times X\rightarrow\mathbb{R}\)は直積距離空間\(\left(X\times X,d'\right)\)上の連続関数である。
距離空間\(\left(X,d\right)\)の距離関数\(d:X\times X\rightarrow\mathbb{R}\)は直積距離空間\(\left(X\times X,d'\right)\)上の連続関数である。
\(d'\left(\left(x_{2},y_{2}\right),\left(x_{1},y_{1}\right)\right)^{2}=d\left(x_{2},x_{1}\right)^{2}+d\left(y_{2},y_{1}\right)^{2}\)であるので、\(0<\delta\)として\(d'\left(\left(x_{2},y_{2}\right),\left(x_{1},y_{1}\right)\right)<\delta\rightarrow d\left(x_{2},x_{1}\right)<\delta\land d\left(y_{2},y_{1}\right)<\delta\)となる。
このとき、
\begin{align*} d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right) & \leq d\left(x_{2},x_{1}\right)+d\left(x_{1},y_{1}\right)+d\left(y_{1},y_{2}\right)-d\left(x_{1},y_{1}\right)\\ & =d\left(x_{2},x_{1}\right)+d\left(y_{1},y_{2}\right)\\ & <2\delta \end{align*} となり、同様に、\(d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)<2\delta\)となる。
これより、\(\left|d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)\right|<2\delta\)となるので、\(\delta=\frac{\epsilon}{2}\)とすれば、
\[ \forall\left(x_{1},y_{1}\right)\in X\times X,\forall\epsilon>0,\exists\delta>0,\forall\left(x_{2},y_{2}\right)\in X\times X;\left\{ d\left(x_{2},x_{1}\right)<\delta\land d\left(y_{2},y_{1}\right)<\delta\rightarrow\left|d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right)\right|<\epsilon\right\} \] となるので\(d\)は連続となる。
このとき、
\begin{align*} d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right) & \leq d\left(x_{2},x_{1}\right)+d\left(x_{1},y_{1}\right)+d\left(y_{1},y_{2}\right)-d\left(x_{1},y_{1}\right)\\ & =d\left(x_{2},x_{1}\right)+d\left(y_{1},y_{2}\right)\\ & <2\delta \end{align*} となり、同様に、\(d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)<2\delta\)となる。
これより、\(\left|d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)\right|<2\delta\)となるので、\(\delta=\frac{\epsilon}{2}\)とすれば、
\[ \forall\left(x_{1},y_{1}\right)\in X\times X,\forall\epsilon>0,\exists\delta>0,\forall\left(x_{2},y_{2}\right)\in X\times X;\left\{ d\left(x_{2},x_{1}\right)<\delta\land d\left(y_{2},y_{1}\right)<\delta\rightarrow\left|d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right)\right|<\epsilon\right\} \] となるので\(d\)は連続となる。
ページ情報
| タイトル | 距離関数は連続関数 |
| URL | https://www.nomuramath.com/sghz7ubc/ |
| SNSボタン |
距離空間での集積点と閉包の点列による別定義
\[
x\in A^{d}\leftrightarrow\exists\left(x_{n}\right)_{n=1}^{\infty}\subseteq A\setminus\left\{ x\right\} ,\lim_{n\rightarrow\infty}x_{n}=x
\]
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
距離空間での連続を開近傍を使って表現
\[
\forall\epsilon>0,\exists\delta>0,f\left(U_{\delta}\left(a\right)\right)\subseteq U_{\epsilon}\left(f\left(a\right)\right)
\]
2つの距離関数と点列・開集合・閉集合の関係

