離散位相は距離化可能
離散位相は距離化可能
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
任意の\(x\in X\)に対し\(U_{1/2}\left(x\right)=\left\{ x\right\} \)となるので\(\left\{ x\right\} \)は開集合となる。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。
ページ情報
| タイトル | 離散位相は距離化可能 |
| URL | https://www.nomuramath.com/s4i1c176/ |
| SNSボタン |
距離空間での開集合と点列の収束
コーシー列と部分列の収束
コーシー列と部分列の収束
距離空間ではコンパクト集合と点列コンパクト集合とは同値
距離空間と位相空間の関係
距離空間の開集合族は位相空間

