距離空間での有界列の定義
距離空間での有界列の定義
距離空間\(\left(X,d\right)\)で点列\(\left(x_{n}\right)_{n\in\mathbb{N}}\)が与えられたとき、ある\(M>0\)とある\(a\in X\)があり、任意の\(n\in\mathbb{N}\)で\(d\left(x_{n},a\right)\leq M\)が成り立つとき、\(\left(x_{n}\right)_{n\in\mathbb{N}}\)は有界列という。
すなわち、部分集合\(\left\{ x_{n};n\in\mathbb{N}\right\} \)が有界なことである。
距離空間\(\left(X,d\right)\)で点列\(\left(x_{n}\right)_{n\in\mathbb{N}}\)が与えられたとき、ある\(M>0\)とある\(a\in X\)があり、任意の\(n\in\mathbb{N}\)で\(d\left(x_{n},a\right)\leq M\)が成り立つとき、\(\left(x_{n}\right)_{n\in\mathbb{N}}\)は有界列という。
すなわち、部分集合\(\left\{ x_{n};n\in\mathbb{N}\right\} \)が有界なことである。
通常距離で考える。
点列\(\left(\left(-1\right)^{n}\right)_{n\in\mathbb{N}}\)は任意の\(n\in\mathbb{N}\)で\(d\left(\left(-1\right)^{n},0\right)\leq1\)となるので有界列である。
点列\(\left(n\right)_{n\in\mathbb{N}}\)は任意の\(M>0\)、任意の\(a\in\mathbb{R}\)に対し、\(n=M+a+1\)ととれば\(d\left(n,a\right)>M\)となるので有界列ではない。
点列\(\left(\left(-1\right)^{n}\right)_{n\in\mathbb{N}}\)は任意の\(n\in\mathbb{N}\)で\(d\left(\left(-1\right)^{n},0\right)\leq1\)となるので有界列である。
点列\(\left(n\right)_{n\in\mathbb{N}}\)は任意の\(M>0\)、任意の\(a\in\mathbb{R}\)に対し、\(n=M+a+1\)ととれば\(d\left(n,a\right)>M\)となるので有界列ではない。
ページ情報
タイトル | 距離空間での有界列の定義 |
URL | https://www.nomuramath.com/qqq2acf4/ |
SNSボタン |
距離関数は連続関数
距離空間$\left(X,d\right)$の距離関数$d:X\times X\rightarrow\mathbb{R}$は直積距離空間$\left(X\times X,d'\right)$上の連続関数である。
距離空間での開集合と閉集合の定義
\[
\forall x\in A,\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]
距離空間の有界・直径と全有界の定義
\[
\diam\left(A\right):=\sup\left\{ d\left(a,b\right);a,b\in A\right\}
\]
ε近傍(開球)の定義
\[
U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\}
\]