フルヴィッツ・ゼータ関数の積分表現
フルヴィッツ・ゼータ関数の積分表現
\[ \zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt \]
\(\Gamma\left(s\right)\)はガンマ関数
\[ \zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数\(\Gamma\left(s\right)\)はガンマ関数
\begin{align*}
\zeta\left(s,\alpha\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\frac{\Gamma\left(s\right)}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\frac{\Gamma\left(s\right)}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\mathcal{L}_{t}\left[H\left(t\right)t^{s-1}\right]\left(\alpha+k\right)\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\int_{-\infty}^{\infty}H\left(t\right)t^{s-1}e^{-\left(\alpha+k\right)t}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}e^{-\alpha t}\sum_{k=0}^{\infty}e^{-kt}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}e^{-\alpha t}\frac{1}{1-e^{-t}}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt
\end{align*}
ページ情報
| タイトル | フルヴィッツ・ゼータ関数の積分表現 |
| URL | https://www.nomuramath.com/pdkgbgzp/ |
| SNSボタン |
ゼータ関数の通常型母関数
\[
\sum_{k=2}^{\infty}\zeta\left(k\right)z^{k}=-z\left(\psi\left(z\right)+\pi\tan^{-1}\left(\pi z\right)+\gamma\right)
\]
リーマン・ゼータ関数の等式(解析接続)
\[
\zeta\left(s\right)=1+\sum_{j=0}^{\infty}C\left(-s,j\right)\zeta\left(s+j\right)
\]
リーマン・ゼータ関数の解析接続による非負整数値
\[
\zeta\left(-n\right)=\left(-1\right)^{n}\frac{B_{n+1}}{n+1}
\]
リーマン・ゼータ関数の微分の極限
\[
\lim_{x\rightarrow0}x^{n+1}\zeta^{\left(n\right)}\left(1\pm x\right)=\pm\left(-1\right)^{n}n!
\]

