フルヴィッツ・ゼータ関数の積分表現
フルヴィッツ・ゼータ関数の積分表現
\[ \zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt \]
\(\Gamma\left(s\right)\)はガンマ関数
\[ \zeta\left(s,\alpha\right)=\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt \]
-
\(\zeta\left(\alpha,\beta\right)\)はフルヴィッツ・ゼータ関数\(\Gamma\left(s\right)\)はガンマ関数
\begin{align*}
\zeta\left(s,\alpha\right) & =\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\frac{\Gamma\left(s\right)}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\frac{\Gamma\left(s\right)}{\left(\alpha+k\right)^{s}}\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\mathcal{L}_{t}\left[H\left(t\right)t^{s-1}\right]\left(\alpha+k\right)\\
& =\frac{1}{\Gamma\left(s\right)}\sum_{k=0}^{\infty}\int_{-\infty}^{\infty}H\left(t\right)t^{s-1}e^{-\left(\alpha+k\right)t}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}e^{-\alpha t}\sum_{k=0}^{\infty}e^{-kt}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}t^{s-1}e^{-\alpha t}\frac{1}{1-e^{-t}}dt\\
& =\frac{1}{\Gamma\left(s\right)}\int_{0}^{\infty}\frac{t^{s-1}e^{-\alpha t}}{1-e^{-t}}dt
\end{align*}
ページ情報
タイトル | フルヴィッツ・ゼータ関数の積分表現 |
URL | https://www.nomuramath.com/pdkgbgzp/ |
SNSボタン |
リーマン・ゼータ関数とディリクレ・イータ関数の定義
\[
\zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]
フルヴィッツのゼータ関数の定義
\[
\zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}}
\]
ζ(2)の値
\[
\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\]
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]