誤差関数・相補誤差関数・虚数誤差関数の定義
誤差関数・相補誤差関数・虚数誤差関数の定義
(1)誤差関数
\[ erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt \](2)相補誤差関数
\[ erfc(x)=1-erf(x) \](3)虚数誤差関数
\[ erfi(x)=-ierf(ix) \]ページ情報
タイトル | 誤差関数・相補誤差関数・虚数誤差関数の定義 |
URL | https://www.nomuramath.com/ovfv1vqx/ |
SNSボタン |
相加平均・相乗平均・調和平均の大小関係
\[
\text{調和平均}\leq\text{相乗平均}\leq\text{相加平均}
\]
期待値・分散・共分散などの定義
\[
E(X)=\int_{-\infty}^{\infty}xP(x)dx
\]
共分散の基本的性質
\[
Cov(X,aY)=aCov(X,Y)
\]
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]