誤差関数・相補誤差関数・虚数誤差関数の定義
誤差関数・相補誤差関数・虚数誤差関数の定義
(1)誤差関数
\[ erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt \](2)相補誤差関数
\[ erfc(x)=1-erf(x) \](3)虚数誤差関数
\[ erfi(x)=-ierf(ix) \]ページ情報
| タイトル | 誤差関数・相補誤差関数・虚数誤差関数の定義 |
| URL | https://www.nomuramath.com/ovfv1vqx/ |
| SNSボタン |
相加平均・相乗平均・調和平均・一般化平均の定義
\[
\mu_{A}=\frac{1}{n}\sum_{k=1}^{n}x_{k}
\]
期待値・分散・共分散などの定義
\[
E(X)=\int_{-\infty}^{\infty}xP(x)dx
\]
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]
マルコフの不等式
\[
P\left(\left|X\right|\geq\epsilon\right)\leq\frac{E\left(\left|X\right|\right)}{\epsilon}
\]

